CANN Recipes
Docs

Quickstart

用 5 分钟确定你的路线,并进入可运行的样例。

文档正文

Quickstart

用 5 分钟确定你的路线,并进入可运行的样例。

Step 1: Choose Your Track

Track Description Entry
Training 需要在 Ascend 集群上进行 RL / SFT 训练优化 recipes/train.md
Inference 需要大模型高吞吐或低时延部署 recipes/infer.md
Embodied Intelligence 需要机器人操作类模型推理或训练 recipes/embodied.md
Spatial Intelligence 需要 3D / 空间视觉模型推理或训练 recipes/spatial.md
HarmonyOS Inference 需要端侧推理和自定义算子实践 recipes/harmony.md

Step 2: Pick a Quickstart

Area Entry Why
LLM Inference https://gitcode.com/cann/cann-recipes-infer/-/blob/master/models/gpt-oss/README.md 部署路径清晰,适合入门
LLM Training https://gitcode.com/cann/cann-recipes-train/-/blob/master/llm_rl/qwen2_5/verl_npu_demo/README.md 单卡 Atlas A2 上手
Embodied https://gitcode.com/cann/cann-recipes-embodied-intelligence/-/blob/master/manipulation/pi0/infer_with_torch/README.md Graph Mode + Operator Fusion
Spatial https://gitcode.com/cann/cann-recipes-spatial-intelligence/-/blob/master/models/vggt/README.md 推理与评测脚本完整
HarmonyOS https://gitcode.com/cann/cann-recipes-harmony-infer/-/blob/master/ops/ascendc/docs/custom-npu_sobel.md 端侧算子路径最短

Step 3: Run the Example

每个样例都包含以下最小信息:

Item Description
Environment 环境与依赖
Model & Data 模型与数据准备
Launch 启动脚本
Results 性能与精度说明

如果你需要统一的环境清单,参考 getting-started/environment.md